From WikiChip
Editing arm holdings/microarchitectures/cortex-a510

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 175: Line 175:
 
Once a μOP is issued to the VPU from one of the cores it is sent to the arbitration unit. Arbitration is completely hardware-based with execution sharing and utilization being entirely transparent to software. There is no user or OS-level software intervention for the arbitration of vector unit accesses between the cores. Furthermore, from a software perspective, each core appears to have dedicated access to the vector unit. Scheduling is very fine-grained between the cores to make sure there is minimal overhead caused by the sharing. There is no penalty for sharing or using the VPU. Arm says that they see very minimal performance overhead due to the sharing of the VPU. In their own internal testing, on the SPECfp 2006 benchmark, they see around a 1% performance degradation if both cores are executing FP/vector instructions at the same time as they compete to use the vector datapath.
 
Once a μOP is issued to the VPU from one of the cores it is sent to the arbitration unit. Arbitration is completely hardware-based with execution sharing and utilization being entirely transparent to software. There is no user or OS-level software intervention for the arbitration of vector unit accesses between the cores. Furthermore, from a software perspective, each core appears to have dedicated access to the vector unit. Scheduling is very fine-grained between the cores to make sure there is minimal overhead caused by the sharing. There is no penalty for sharing or using the VPU. Arm says that they see very minimal performance overhead due to the sharing of the VPU. In their own internal testing, on the SPECfp 2006 benchmark, they see around a 1% performance degradation if both cores are executing FP/vector instructions at the same time as they compete to use the vector datapath.
  
All scalar and floating-point NEON and SVE2 instructions are executed through the vector datapath. There is support for optional crypto as well. This datapath itself is configurable. Possible configurations include having two 64b or two 128b data pipes - twice the peak bandwidth delta between the two configurations. A configuration of 2x128b data pipes will offer twice the peak compute of the {{\\|Cortex-55}}. Depending on the configuration, designers have the flexibility in deciding between area and performance depending on their application and workload characterization. In the 2x128b configuration, the Cortex-A510 complex can achieve 16 FP16 FLOPS/clk. Note that regardless of the vector unit size or configuration, for SVE, there is a 128b vector register file.
+
All scalar and floating-point NEON and SVE2 instructions are executed through the vector datapath. This datapath itself is configurable. Possible configurations include having two 64b or two 128b data pipes - twice the peak bandwidth delta between the two configurations. A configuration of 2x128b data pipes will offer twice the peak compute of the {{\\|Cortex-55}}. Depending on the configuration, designers have the flexibility in deciding between area and performance depending on their application and workload characterization. In the 2x128b configuration, the Cortex-A510 complex can achieve 16 FP16 FLOPS/clk. Note that regardless of the vector unit size or configuration, for SVE, there is a 128b vector register file.
  
 
== Performance claims ==
 
== Performance claims ==

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameCortex-A510 +
core count1 + and 2 +
designerARM Holdings +
first launchedMay 25, 2021 +
full page namearm holdings/microarchitectures/cortex-a510 +
instance ofmicroarchitecture +
instruction set architectureARMv9.0 +
manufacturerTSMC +, Samsung +, GlobalFoundries + and SMIC +
microarchitecture typeCPU +
nameCortex-A510 +
process7 nm (0.007 μm, 7.0e-6 mm) +, 6 nm (0.006 μm, 6.0e-6 mm) + and 5 nm (0.005 μm, 5.0e-6 mm) +